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Abstract

The advent of data collection and game track-
ing in modern professional sports offers potential
for increasingly sophisticated analysis of game-
play. This paper focused on developing NBA
player groupings that are more informative than
the traditional enumeration of 5 positions. Us-
ing detailed statistics — including groupings by
play-type (pick and roll, isolation) and more —
applying the K-means clustering algorithm identi-
fies functional roles on the basketball court.

1. Introduction
1.1. Background

There are traditionally five positions in basketball: point
guards, shooting guards, small forwards, power forwards,
and centers. Each position provides a unique framework
for a player’s role on the court and their contribution to the
game. For instance, point guards typically manage ball han-
dling and initiate offensive plays by passing to teammates,
whereas power forwards often play near the basket, focusing
on layups and rebounds. Much of this positioning and dele-
gation of roles is attributable to physical qualities such as
size and athleticism — taller players are typically forwards
who guard the basket, get rebounds, and score layups; ath-
letic players are typically explosive and coordinated guards,
who handle the ball and create scoring opportunities.

However, modern basketball displays significant variation
in play style and capability within each position. A notable
example of this inter-positional variance is the “stretch four,”
a power forward with exceptional three-point shooting skills.
These players “stretch” the defense by forcing them to cover
more open court. This new archetype emerged due to the
increased emphasis on three-point shooting in contemporary
basketball. Understanding these evolving roles is crucial
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for team management and strategy formulation. Identifying
player types more precisely can enhance team composition,
improve player development strategies, and optimize game
tactics to counter specific opponents.

This has prompted me to reconsider the traditional cate-
gorization of NBA players. This paper looks to use use
statistics to identify player types more effectively than the
traditional set of five positions allows. To do so, we use in-
game data from nba.com/stats to cluster players based
on similarity. Due to the large dimensionality of the dataset,
we project the data onto a lower dimensional representation
in order to visualize the data and its clusters.

2. Related Work
Player clustering in basketball analytics has evolved signifi-
cantly to address the limitations of traditional ”box score”
statistics, which often fail to capture the complex skill sets
of modern NBA players. Alagappan’s seminal work at the
2012 MIT Sloan Sports Analytics Conference introduced
the expansion of traditional positions into thirteen detailed
player roles using topological data analysis, challenging
the traditional five-position framework and enriching the
understanding of player contributions (?). Building on this,
Chang et al. utilized larger datasets and advanced statisti-
cal methods such as PCA and k-means clustering to refine
player categorization, which helped visualize NBA players
as a network clustered from their statistical performance (?).

Chen, Zhang, and Xu applied clustering techniques to cate-
gorize players into specific offensive roles using play-type
data from the Chinese Basketball Association, finding signif-
icant correlations between these roles and team performance
(?). This highlighted the value of detailed role analysis for
strategic team management.

This study enhances the literature by integrating various
statistics, including clutch stats, hustle plays, and advanced
shooting metrics. This approach improves the granularity
and accuracy of player clustering by using comprehensive
datasets, providing new insights into player contributions
that can influence team management and player evaluation
strategies.
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3. Data
3.1. Description

Our data is collected from the https://www.nba.com/
stats/players/traditional page. I collect player
stats from every season since the 2015-16 season. In our
analysis, I only use data from the 2023-24 season. Potential
extensions to this project could look into cluster evolution
over time, or how players progressed throughout their career.

Our data contains 628 features for 572 players during the
2023-24 season. All statistics are measured on a per-game
basis. A comprehensive explanation of the statistics cap-
tured follows:

• Traditional Statistics: Common statistics like points,
rebounds, assists, etc.

• Tracking Statistics: Tracks player performance based
on in-game moves. This includes catch-and-shoot op-
portunities, drives to the basket, pull-up shots, and
more.

• Clutch Statistics: Statistics measured during “clutch
time”, which is “defined as the final five minutes of the
fourth quarter or overtime when the score is within five
points”.1

• Play Type Statistics: Tracks player performance based
on common set plays. Some examples include pick-
and-roll, isolation plays, and post-up plays.

• Box Out Statistics: Player statistics to measure how
often players box, and rebounding outcomes when they
box out — both on offense and defense.

• Hustle Statistics: Measures player’s “hustle”, includ-
ing the number of charges they draw, loose balls they
recover, and more.

A schema is provided below in Figure 1 for visualization
purposes.

1https://www.nba.com/news/stats-breakdown-coming-
through-in-the-clutch

Figure 1. Star Schema Diagram for NBA Data

3.2. Pre-processing

The most important pre-processing step I took was handling
null values. In traditional statistics, every player has statis-
tics present. However, in some of the more advanced stat
tables, there were many missing values. These missing val-
ues were not random — the data for “Isolation” play types
has a disclaimer that “Minimum of 10 min/game and 10
possessions per play type to qualify”. I deemed that players
who did not qualify to be tracked should be imputed with 0
since that is essentially the interpretation of their absence in
the data. Intuitively, this makes sense — most NBA centers
do not handle the ball often, and thus their true statistics
in play types like “isolation” are essentially 0. This idea
generalizes to all players who are missing stats in-game
scenarios that they are unlikely to participate in.

Aside from null value handling, some of our methods re-
quire additional pre-processing, such as double centering
in MDS, or standardizing in PCA. I address the particular
pre-processing steps for each analysis in the Methods [4]
section.

4. Methods
4.1. Multidimensional Scaling

Multidimensional Scaling (MDS) is a statistical technique
for projecting high-dimensional data into low-dimensional
space. MDS focuses on preserving the distance relationships
among the original data points, meaning that items that are
similar to each other in the high-dimensional space remain
close in the reduced space, and those that are different are
placed further apart.

Specifically, MDS starts by computing a matrix of distances
D between each pair of points in the data set. This matrix
represents the pairwise dissimilarities between data points.
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For n items, D is an n × n symmetric matrix where the
element dij is the distance between item i and item j.

The next step involves transforming the distance matrix D
into a matrix B through double centering:

B = −1

2
JD2J

where D2 denotes the element-wise square of D, and J
is the centering matrix defined as J = I − 1

n11
T , with I

being the identity matrix and 1 a vector of all ones. MDS
then performs an eigenvalue decomposition on B to obtain
eigenvalues λi and eigenvectors vi.

The final configuration of points in a lower-dimensional
space is obtained by selecting the top k eigenvalues and
their corresponding eigenvectors. The coordinate matrix X
is given by:

X = VkΛ
1/2
k

where Vk is the matrix of the k largest eigenvectors and Λk

is the diagonal matrix of the corresponding eigenvalues. The
rows of X represent the coordinates of the original items in
the new k-dimensional space.

See Figure 2 for our MDS results.

4.2. Principal Component Analysis

Principal Component Analysis (PCA) is an alternative sta-
tistical technique for dimensionality reduction. Specifically,
PCA works by transforming the data into a new coordinate
system defined by the directions which maximizes variance.

First, the data is standardized the data to have a mean of zero
and a standard deviation of one, ensuring equal treatment of
all variables.

Z =
X− µ

σ

Next, a covariance matrix is calculated from the standard-
ized data to capture the variance and covariance between
features.

C =
1

n− 1
ZTZ

Then, the covariance matrix is decomposed into its eigen-
vectors and eigenvalues, which define the new axes and their
importance, respectively.

Cv = λv

Lastly, principal components are selected based on the mag-
nitude of their eigenvalues, and the original data is projected
onto these components to reduce dimensions.

P = ZVk

See Figure 4 for our PCA results.

4.3. K-Means Clustering

K-means clustering is an iterative algorithm that creates
clusters in data given k, a constant representing the number
of clusters desired.

Algorithm 1 K-means Clustering
k = number of clusters
Randomly initialize k centroids in data
while clusters are still updating do

Reassign points to clusters to nearest centroid
Re-compute the centroid based on the new cluster
if No updates then

return Cluster assignments
end if

end while

I use this algorithm to construct our clustering assignments.
This particular algorithm is optimal to use in our case, as
it lets us control the overall number of clusters I group
players into. Given the real-world implication of a player
cluster representing players of a similar production level,
we’d like to have ultimate control over the granularity of
the clustering assignments. Additionally, an unsupervised
learning algorithm since we are relying on the algorithm
itself to build the clusters, and do not have labeled data.
Figure 2 and 4 each display the result of k-means clustering
for k = 6.

4.4. Multinomial Logistic Regression

Multinomial logistic regression (MLR) is an extension of
logistic regression. In MLR, the problem formulation is
slightly different — I first choose a baseline class to serve
as reference to the other classes. Then, model the log-odds
function as a linear combination of regression coefficients
and features. For a given baseline class K, MLR computes
n − 1 regression estimates for each output class k, not
including the baseline K:

ln(
P(yi = k)

P(yi = K)
) = βkXi

where yi is the class of data point i. From this equation, we
can see that coefficient estimates apply only to comparisons
between the given class k and the baseline class K. Thus,
for positive values of βik, an increase in feature i makes it
more likely that X would be assigned to k than K, while a
negative βik makes K more likely.

Parameters in MLR are usually estimated through Maximum
A Posteriori (MAP) estimation, where we maximize the
posterior distribution with respect to β. The posterior is
given by f(β|X). Rearranging using Bayes Rule, MAP
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estimation can be expressed as

β̂MAP =β f(X|β)g(β)

where g(β) is the prior distribution over β. These coef-
ficients are estimated by quasi-Newton algorithms like L-
BFGS, or gradient methods.

I use the regression outputs to infer the relative predictive
power of certain features in assigning points to clusters.
While these regression estimates don’t necessarily extend
within clusters, the coefficients of a cluster can be compared
to the coefficients of other clusters compared to the same
baseline in order to interpret which features impact which
clusters.

For instance, if cluster 1 has a positive coefficient for fea-
ture i that is much larger than clusters 2, 3, and 4, then I
can say that feature i is more predictive of cluster 1 than
the others since they were compared to the same baseline.
Additionally, we can also uncover information about the
baseline cluster by re-running the regression with a different
baseline cluster and comparing results. Tables 1 and 2 show
our regression results, for a visual example.

5. Results
Figure 2 shows the results of running MDS to obtain a
3-dimensional representation of the data and applying K-
Means clustering to it (k = 6). Figure 3 is an MDS stress
plot, which visualizes the relationship between the dimen-
sionality of the data and the stress value. The stress value
decreases significantly at 3 dimensions, suggesting that 3 di-
mensions capture a substantial amount of the data’s structure
while minimizing dissimilarities between distances between
points in the lower dimensional space and the original high-
dimensional data. In other words, the stress plot indicates
that 3 dimensions effectively represent the data’s structure
with minimal loss of information.

Initially, I planned on exploring a wider range of dimensions
for clustering after dimensionality reduction with MDS.
However, applying clustering to higher-dimensional
embeddings yielded significantly different assignments
compared to 3 dimensions. This finding, along with the
substantial decrease in stress observed in the MDS stress
plot at 3 dimensions, suggests that using more dimensions
might not be necessary for our data.

Figure 4 shows the results of running PCA to obtain
a 3-dimensional representation of the data as well as
applying K-Means clustering (k = 6). Figure 5 is a PCA
Scree plot, which visualizes variance explained by each
principal component in PCA.

We can see that little of the variance in the overall data is
explained by the first 3 principal components — 52.7%,

to be exact. Therefore, I use MDS instead, since it is a
distance-based metric.

Figure 2. Cluster assignments in reduced dimensions (MDS)

Figure 3. MDS Stress plot
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Figure 4. Cluster assignments in reduced dimensions (PCA)

Figure 5. PCA Scree plot

5.1. Interpretation

I use the regression tables in the appendix to interpret the
meaning of our clusters. Tables 1 and 2 in the appendix
represent the MLR regression using Cluster 0 and Cluster
5 as the baseline classes, respectively. Standard errors for
coefficient estimates are given in parentheses. P-values are
indicated by ”*” icons, with a detailed guide at the bottom
of the table. I compute adjusted P-values using Benjamini-
Hochberg adjustment, in order to control the Type 1 error
rate due to the quantity of features I regress on.

The interpretation of coefficients is that a one-unit increase

in feature value would correspond to an increase (or de-
crease, if the coefficient is negative) of βi in the log odds
for predicting cluster i over baseline.

I give commentary on the various clusters found by our
model and their relevant features, according to the MLR.

• Clusters 0 and 3: Both of these clusters contain NBA
players who receive little play time and do not record
impactful stats — the canonical ”bench warmer”. One
interesting finding to note is the coefficient of .884 for
the ”Minutes” feature of cluster 3 relative to cluster 0,
which is statistically significant at the .001 level.2 In
addition to playing more minutes, cluster 3 can be char-
acterized as scoring more points while recording less
turnovers than cluster 0 (significant at the .05 level).

In addition to bench players, cluster 3 contains high-
production players who did not record many games
due to injury (Ja Morant, Zach LaVine, Marcus Smart,
Robert Williams III). No such players appear in cluster
0, indicating two ”levels” of bench players.

• Cluster 1: Across baselines, cluster 1 is associated
with higher three point percentage and free throw per-
centage across all clusters (statistically significant at
the .01 and .05 levels). This indicates that cluster 1
are good shooters. They also have the lowest relative
coefficient3 on turnovers, indicating that could be a
guard-type player expected to make smart passes. The
top 3 leaders in 3-point percentage (Grayson Allen,
Luke Kennard, Mike Conley) are present in this cluster,
but positions range from point guard to power forward
(Taurean Prince).

• Cluster 2: Characterized by the highest relative coeffi-
cients on minutes and points (significant to the .001 and
.01 levels respectively), this cluster contains the highest
offensively producing players of the NBA. MVP candi-
date guards Luka Doncic, Shai Gilgeous-Alexander are
present, alongside high producing forward-type play-
ers like Jaren Jackson Jr, Julius Randle, and LeBron
James.

• Cluster 4: This cluster has positive coefficients on
games played and minutes (both staistically signifi-
cant at the .001 level), a large positive coefficient on
rebounds (.01 level), and is the only cluster with a
positive coefficient on field goal percentage (.01 level).

Cluster 4 are high performing forward-type players.
They play a lot because are consistent scorers from the

2Unless otherwise noted, coefficient values will refer to the
coefficient in Table 1 with baseline cluster 0.

3by which I mean the coefficient compared to the coefficients
for other clusters on the same feature relative to the same baseline
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field who get rebounds. The high field goal percent-
age but low three point percentage indicates 2-point
shots closer to the basket, which typically have higher
success percentages. While many of these prototypical
NBA forwards are in this cluster like Giannis Ante-
tokounmpo and Bam Adebayo, there are also many
guard-like players who are known for scoring around
the rim and getting rebounds: Josh Hart, Russell West-
brook, and Josh Giddey. Giddey and Hart lead all
shooting guards in rebounds for the 2024 season.

• Cluster 5: This cluster has a positive coefficient on
games played (.001 level) but the coefficient on min-
utes relative to cluster 0 is not statistically different
from zero. Their coefficient on turnovers (.001 level)
is almost as low as the guards, but they have an even
higher coefficient on rebounds (.01 level) than cluster
4.

These players are backup or low-usage forward-type
players. They play in many games, but their minutes
are similar to bench players, and get many rebounds.
They are not scoring factors, but they also do not turn
the ball over much — indicating that they do not get
many opportunities with the ball (and as such, less
opportunities for a turnover). Characteristic players in-
clude Al Horford, Mo Bamba, and Tristan Thompson.

6. Potential Applications
• Player Acquisition: The construction of a basketball

team is fluid — trades happening during the season as
well as free agency in the off-season means that rosters
are not fixed for most of the year. These clusters offer
a framework to identify players who address a roster
need. For instance, a coach who notices that games
are often lost because the 2nd team is out-rebounded
might target a player in Cluster 5 to provide back-up
forward support.

• Line-up Setting: The clusters could aid coaches in
setting game lineups. The clusters can be used in 2
ways in this scenario — defensively and offensively.
For instance, if another team is substituting in players
from cluster 1, a coach would want to sub-in his best
perimeter defenders and draw up plays to designed to
contest 3-point shots.

7. Conclusion
While our proposed clusters rely on traditional player posi-
tions for their interpretability, our clusters do identify out-
of-position players who exhibit play styles very different
from their assigned 1-5 position. From our analysis, players
cluster into groups that can be best described as 3-point
scoring guards (cluster 1), offensive gamechangers (cluster

2), tier 1/2 big men (cluster 4/5), and bench players (clusters
0 and 3). Our clustering assignments do not appear to be a
suitable replacement for traditional positioning, but they do
represent a grouping of players based on in-game produc-
tion as opposed to physical factors, shedding light on some
of the functional roles that players on the court are expected
to take.
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8. Appendix

Table 1. Multinomial Logistic Regression Results: Baseline Cluster = 0 (Standard errors in parentheses)

Feature Cluster Assignment

1 2 3 4 5

Intercept −33.691∗∗∗ −36.921∗∗∗ −5.051 −33.304∗∗∗ −35.905∗∗∗

(0.324) (0.248) (6.338) (0.272) (0.776)

Defensive Rating −0.026 −0.039 −0.083 −0.159∗ 0.061
(0.064) (0.077) (0.060) (0.074) (0.053)

Age −0.403∗∗∗ −0.515∗∗∗ −0.326∗∗ −0.308∗ −0.086
(0.122) (0.141) (0.108) (0.141) (0.100)

Games Played 0.452∗∗∗ 0.380∗∗∗ 0.001 0.431∗∗∗ 0.410∗∗∗

(0.062) (0.064) (0.037) (0.065) (0.058)

Minutes 1.043∗∗∗ 1.358∗∗∗ 0.884∗∗∗ 0.989∗∗∗ 0.272
(0.259) (0.282) (0.242) (0.273) (0.244)

Points 1.325∗∗ 1.485∗∗ 1.017∗ 1.234∗ 0.725
(0.499) (0.500) (0.456) (0.497) (0.503)

Field Goal % −0.067 −0.162 0.017 0.257∗∗ 0.096
(0.105) (0.136) (0.052) (0.094) (0.073)

3-Point % 0.179∗∗ 0.115 0.054 0.027 0.037
(0.060) (0.100) (0.033) (0.059) (0.049)

Free Throw % 0.127∗ 0.118 0.038 0.045 0.025
(0.046) (0.061) (0.025) (0.055) (0.030)

Turnovers −4.876∗∗∗ −3.204∗∗ −3.103∗∗ −2.929∗ −4.412∗∗∗

(1.344) (1.319) (1.089) (1.357) (1.399)

Rebounds −0.422 0.473 0.855 2.024∗∗ 2.445∗∗

(0.818) (0.818) (0.718) (0.797) (0.798)

Assists 0.737 1.377 1.187 0.111 −0.314
(0.845) (0.850) (0.734) (0.940) (0.950)

Steals 2.906 3.400 5.146 0.559 2.227
(2.941) (3.057) (2.614) (3.222) (2.848)

Blocks 2.024 0.419 1.457 3.000 5.079
(3.253) (3.296) (2.431) (3.193) (3.136)

+/− −0.100 −0.534∗ −0.441∗ −0.593∗ 0.095
(0.290) (0.301) (0.251) (0.312) (0.287)

Note: ∗∗∗p < 0.001,∗∗ p < 0.01,∗ p < 0.05
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Table 2. Multinomial Logistic Regression: Baseline Cluster = 5 (Standard errors in parentheses)

Feature Cluster Assignment

0 1 2 3 4

Intercept 42.330∗∗∗ −3.367∗∗∗ −16.866∗∗∗ 35.204∗∗∗ −5.101∗∗∗

(3.357) (0.209) (0.094) (3.500) (0.078)

Defensive Rating −0.117∗ −0.033 0.050 −0.181∗∗ −0.159∗

(0.059) (0.051) (0.069) (0.056) (0.064)

Age 0.079 −0.312∗∗∗ −0.412∗∗∗ −0.232∗∗ −0.207
(0.104) (0.087) (0.111) (0.094) (0.113)

Games Played −0.432∗∗∗ 0.046 −0.027 −0.428∗∗∗ 0.034
(0.059) (0.038) (0.045) (0.053) (0.039)

Minutes −0.267 0.763∗∗∗ 1.080∗∗∗ 0.597∗∗ 0.714∗∗∗

(0.257) (0.185) (0.211) (0.199) (0.197)

Points −0.810 0.564∗ 0.702∗∗ 0.187 0.458
(0.512) (0.270) (0.273) (0.302) (0.260)

Field Goal % −0.088 −0.171 −0.257∗ −0.073 0.166∗

(0.079) (0.092) (0.127) (0.074) (0.077)

3-Point % −0.027 0.144∗∗∗ 0.052 0.029 −0.012
(0.052) (0.038) (0.092) (0.051) (0.039)

Free Throw % −0.018 0.097∗ 0.084 0.014 0.016
(0.032) (0.042) (0.058) (0.033) (0.052)

Turnovers 4.586∗∗∗ −0.450 1.259 1.483 1.588
(1.430) (1.087) (1.105) (1.145) (1.110)

Rebounds −2.633∗∗ −2.876∗∗∗ −1.994∗∗∗ −1.581∗∗ −0.427
(0.825) (0.488) (0.485) (0.537) (0.365)

Assists 0.265 1.095 1.706∗ 1.510∗ 0.409
(0.961) (0.676) (0.708) (0.707) (0.764)

Steals −2.075 0.626 1.230 3.265 −1.616
(3.014) (1.786) (1.996) (1.874) (2.037)

Blocks −4.842 −2.932 −4.397∗∗ −3.683 −2.091
(3.251) (1.660) (1.786) (2.684) (1.295)

+/− −0.175 −0.146 −0.522∗ −0.561∗ −0.644∗∗

(0.302) (0.218) (0.238) (0.242) (0.246)

Note: ∗∗∗p < 0.001,∗∗ p < 0.01,∗ p < 0.05
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